Data & Code
Walther, D. B., & Shen, D. (2014). Nonaccidental properties underlie human categorization of complex natural scenes. Psychological science, 25(4), 851-860. https://doi.org/10.1177/0956797613512662.
Rezanejad, M., Downs, G., Wilder, J., Walther, D. B., Jepson, A., Dickinson, S., & Siddiqi, K. (2019). Scene categorization from contours: Medial axis based salience measures. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 4116-4124).
The SaliencyToolbox is used for computing the saliency map of an image.
Walther, D., & Koch, C. (2006). Modeling attention to salient proto-objects. Neural networks, 19(9), 1395-1407. https://doi.org/10.1016/j.neunet.2006.10.001.
A circular space of realistic scenes, generated by a generative adversarial network.
Son, G., Walther, D. B., & Mack, M. L. (2022). Scene wheels: measuring perception and memory of real-world scenes with a continuous stimulus space. Behavior Research Methods, 54(1), 444-456. https://doi.org/10.3758/s13428-021-01630-5
Sabrina Perfetto, John Wilder, and Dirk B. Walther (2020) Effects of spatial frequency filtering choices on the perception of filtered images, Vision 4(2), 29. doi: https://doi.org/10.3390/vision4020029
Toronto Scenes is a set of 475 color photographs and line drawings of six natural scene categories which have been used in a number of publications. Please cite:
Walther DB, Chai B, Caddigan E, Beck DM, & Fei-Fei L. (2011). Simple line drawings suffice for functional MRI decoding of natural scene categories, PNAS. 108(23): 9661-9666.
Torralbo A, Walther DB, Chai B, Caddigan E, Fei-Fei L, Beck DM. (2013). Good Exemplars of Natural Scene Categories Elicit Clearer Patterns than Bad Exemplars but Not Greater BOLD Activity. PLoS ONE. 8(3): e58594. doi: 10.1371/journal.pone.0058594